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Skin Microbiome Surveys Are Strongly
Influenced by Experimental Design

Jacquelyn S. Meisel1, Geoffrey D. Hannigan1, Amanda S. Tyldsley1, Adam J. SanMiguel1,
Brendan P. Hodkinson1, Qi Zheng1 and Elizabeth A. Grice1
Culture-independent studies to characterize skin microbiota are increasingly common, due in part to afford-
able and accessible sequencing and analysis platforms. Compared to culture-based techniques, DNA
sequencing of the bacterial 16S ribosomal RNA (rRNA) gene or whole metagenome shotgun (WMS) sequencing
provides more precise microbial community characterizations. Most widely used protocols were developed to
characterize microbiota of other habitats (i.e., gastrointestinal) and have not been systematically compared for
their utility in skin microbiome surveys. Here we establish a resource for the cutaneous research community to
guide experimental design in characterizing skin microbiota. We compare two widely sequenced regions of the
16S rRNA gene to WMS sequencing for recapitulating skin microbiome community composition, diversity, and
genetic functional enrichment. We show that WMS sequencing most accurately recapitulates microbial com-
munities, but sequencing of hypervariable regions 1e3 of the 16S rRNA gene provides highly similar results.
Sequencing of hypervariable region 4 poorly captures skin commensal microbiota, especially Propionibacte-
rium. WMS sequencing, which is resource and cost intensive, provides evidence of a community’s functional
potential; however, metagenome predictions based on 16S rRNA sequence tags closely approximate WMS
genetic functional profiles. This study highlights the importance of experimental design for downstream results
in skin microbiome surveys.
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INTRODUCTION
Research devoted to the skin microbiome has surged in the
past decade, due in large part to accessible, affordable high-
throughput DNA sequencing technology and the realization
that the microbiome may modulate the pathogenesis of many
cutaneous disorders. The majority of protocols for charac-
terizing microbial communities were initially developed and
optimized to survey the gastrointestinal tract or the environ-
ment, niches that harbor distinct sets of microbiota compared
to the skin. A standardized methodology for skin microbiome
studies is lacking, although these protocols are often pivotal
to their outcome (Albertsen et al., 2015; Guo et al., 2013;
Nelson et al., 2014).

A common approach to characterize cutaneous microbial
communities relies on amplification, sequencing, and anal-
ysis of the prokaryotic 16S ribosomal RNA (rRNA) gene. This
approach has been used in multiple studies of skin bacterial
communities and their association with health and disease
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(Hannigan and Grice, 2013). Initial studies used full-length
16S rRNA gene sequences (w1500 kb) generated by Sanger
sequencing methods. Next-generation sequencing platforms
that allow for vastly increased sequencing depth at a fraction
of the cost generate shorter read lengths, making it imprac-
tical to sequence the full-length gene. Therefore, one or
more hypervariable regions, or 16S tags, are selected for
sequencing as a proxy for the full-length gene. No single
hypervariable region is able to distinguish among all bacteria,
and primer biases may differentially affect amplification
efficiency of different types of bacteria. However, specific
regions may be optimal for capturing the diversity and
composition of different ecosystems.

More recently, whole metagenomic shotgun (WMS)
sequencing has been used for both taxonomic and functional
annotation of skin microbial communities (Hannigan et al.,
2015; Human Microbiome Project Consortium, 2012b; Oh
et al., 2014). This approach reduces amplification bias,
captures multikingdom communities, and allows for strain-
level analysis. WMS datasets, although information rich,
are more expensive to generate and require greater compu-
tational knowledge and resources to store, process, and
analyze. Although gene content can be extracted from WMS
data to provide insight into functional processes of the mi-
crobial community, bioinformatic tools now exist to predict
functional content from 16S tag sequences (Langille et al.,
2013) and in some cases may be superior to WMS
sequencing for microbial community classification (Xu et al.,
2014).

Here we present a comparison of experimental strategies to
identify optimal parameters for capturing the composition,
diversity, and genetic content of the cutaneous microbiome.
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We applied 16S rRNA tag sequencing to cutaneous swabs
and a publicly available mock community control of 20
bacterial species in known concentration. We sequenced two
16S tag regions commonly utilized in microbiome studies,
including hypervariable regions 1e3 (V1eV3) and region 4
(V4) (Caporaso et al., 2011) to compare their utility in
accurately characterizing skin microbiota diversity and
composition. Additionally, we performed WMS sequencing
on the same swab samples and controls to identify any
additional utility of WMS sequencing over 16S tag
sequencing for characterizing skin microbiota and identifying
genetic functional enrichment.

RESULTS
Sampling, sequencing, and quality control

Sixty-two cutaneous skin swabs were collected from nine
healthy volunteers (for cohort characteristics, see
Supplementary Table S1 online). Sampled skin sites consisted
of diverse microenvironments with respect to moisture
(sweat) and sebum: sebaceous (retroauricular crease,
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occiput, forehead), moist (toe web, umbilicus), and inter-
mittently moist (antecubital fossa, palm) (Figure 1a).

Whole genomic DNAwas extracted from the swab samples
and subjected to microbiome profiling using three different
approaches: (i) V1eV3 tag sequencing; (ii) V4 tag sequencing;
and (iii) WMS sequencing (Figure 1b and c). V1eV3 tag
sequencing was used by the Human Microbiome Project
(Aagaard et al., 2013; Human Microbiome Project
Consortium 2012a, 2012b). The V4 region was used in the
Earth Microbiome Project (Gilbert et al., 2014) and is widely
utilized to characterize microbiota of other body habitats. We
did not include regions further 30 in the 16S rRNA gene, as
these have been documented to generally perform less well
for a variety of analyses (Conlan et al., 2012; Jumpstart
Consortium Human Microbiome Project Data Generation
Working 2012; Wu et al., 2010) and/or are not widely used
for characterization of microbial communities. All sequencing
was performed on either the Illumina MiSeq or HiSeq 2500
platforms. A publicly available mock community control
(MCC) was sequenced in parallel with the skin samples.
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The V1eV3 dataset contained 2,124,836 total high-quality
sequence reads, with a median of 24,891 sequence reads per
sample. The V4 dataset contained 5,328,215 total high-
quality sequence reads, with a median of 77,928 sequence
reads per sample. The WMS dataset contained 81,553,035
total high-quality sequence reads, with a median of
1,233,172 sequence reads per sample (for per sample
sequence counts, see Supplementary Table S2 online).

Skin bacterial community composition varies by
sequencing technique

We compared each sequencing method to determine how
well they recapitulated the taxonomic relative abundance of
the MCC, which contained 100,000 rRNA operon copies per
organism per microliter. Therefore, each of the 20 species
contained in the MCC should account for 5% of the com-
munity by 16S tag sequencing. For WMS sequencing, ex-
pected MCC abundances must take into account the
b
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concentration of the input DNA. We first mapped our se-
quences to the expected MCC species to identify community
composition (Figure 2a). Hierarchical clustering of taxo-
nomic profiles indicated that WMS provided a close
approximation of the MCC (Figure 2a). V1eV3 tag
sequencing provided the best proxy for 16S-based profiling,
whereas V4 tag sequencing severely underrepresented
Staphylococcus epidermidis and Propionibacterium acnes
and overrepresented Staphylococcus aureus. When using
operational taxonomic unit (OTU)-based methods to char-
acterize the MCC, similar trends were observed, however,
V1eV3 was unable to classify all taxa to the genus level (see
Supplementary Figure S1 online).

Propionibacterium (including P. acnes), Staphylococcus
(including S. epidermidis and S. hominis), and Corynebac-
terium were the dominant bacterial genera on healthy human
skin (Figure 2b and Supplementary Figure S2 online). The
most notable observation was that Propionibacterium was
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vastly underrepresented in the V4 dataset. We used basic
linear regression analysis to correlate the relative abundance
of three prominent skin bacteria in V1eV3 and V4 datasets
compared to their relative abundance in the WMS dataset,
which fairly accurately recapitulated the composition of the
MCC (see Supplementary Figure S3 online). The relative
abundances represented by the V1eV3 dataset had much
higher positive correlations to WMS relative abundances than
were observed with the V4 dataset for Propionibacterium
(R2¼ 0.931 vs. 0.499), Staphylococcus (R2¼ 0.736 vs. 0.153),
and Corynebacterium (R2 ¼ 0.789 vs. 0.281). These data
indicate that V4 representations of skin microbiome compo-
sition are severely biased against bacteria that are present in
great prevalence and abundance on the human skin.

Hierarchical clustering revealed that this bias was not equal
across all microenvironments. Intermittently moist and seba-
ceous samples from the V1eV3 and WMS datasets cluster
together, but V4 samples were less similar (see Supplementary
Figure S4 online). This clustering appears to be driven largely
by underrepresentation of Propionibacterium in V4 tags.Moist
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sites were most taxonomically similar across all sequencing
methods and clustered together regardless of method.

Staphylococcus species level classification in 16S datasets is
enabled by phylogenetic placement algorithms

A tradeoff when using cost-effective next-generation
sequencing is the short read lengths that these platforms
generate, presenting a challenge for accurate genus-, species-
and strain-level classification. Using OTU-based methods,
both V1eV3 and V4 tag sequencing failed to accurately
identify >30% of the species in the MCC (see Supplementary
Figure S5a online). Moreover, only 13.7% of the V1eV3 and
7.6% of the V4 OTUs were classified to the species level in
the cutaneous swab samples (Figure 3a).

Species-level resolution of skin microbiota is especially
important when trying to differentiate between commensals
(i.e., S. epidermidis) and pathogens (i.e., S. aureus). Using the
RDP classifier in QIIME (Quantitative Insights into Microbial
Ecology), we were unable to speciate Staphylococcus in the
V4 samples and only identified S. epidermidis in the V1eV3
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samples (Figure 3b), despite evidence that additional Staph-
ylococcus species live on the skin (Figure 3c). An approach to
improve taxonomic resolution of 16S rRNA tag sequence
data is to use phylogenetic information. We attempted to
classify Staphylococcus species in the 16S datasets by using
pplacer (Matsen et al., 2010), an algorithm that uses
maximum likelihood criteria to place sequences on a fixed
phylogenetic reference tree.

WMS accurately identified the two Staphylococcus spe-
cies, S. epidermidis and S. aureus, in the MCC (see
Supplementary Figure S5b). Only 11% and <1% of Staphy-
lococcus sequences using V1eV3 and V4 tags, respectively,
were classifiable at the species-level using pplacer (see
Supplementary Figure S5b). The pplacer classification of
V1eV3 tags identified the correct species but over-
represented the relative abundance of S. epidermidis. V4 tag
species-level classification identified S. aureus but also
falsely identified S. hominis and S. haemolyticus.

The pplacer analysis of the skin swabs revealed agreement
between the V1eV3 and WMS datasets, but not the V4
dataset. WMS identified the predominant Staphylococcus
species to be S. epidermidis, S. hominis, and S. capitis
(Figure 3a). Of the sequences identified as Staphylococcus at
the genus level in the V1eV3 dataset, 59% were classified at
the species level. S. epidermidis and S. hominis were iden-
tified, but S. capitis was absent (Figure 3b). Less than 1% of
the V4 Staphylococcus sequences were classified by pplacer,
and they were predominantly characterized as S. aureus and
S. haemolyticus (Figure 3c).

Computationally predicted versus observed functional
profiles

A perceived advantage of WMS approaches for skin micro-
biome studies is the functional insight gained through anal-
ysis of genetic enrichment. However, functional genetic
profiles can be predicted from 16S rRNA sequences with the
program PICRUSt (Phylotypic Investigation of Communities
by Reconstruction of Unobserved States) (Langille et al.,
2013), which uses reference genomes to infer a composite
metagenome and predict abundance of gene families.
Therefore, we compared functional genetic profiles obtained
by WMS to PICRUSt-predicted functional genetic profiles of
V4 and V1eV3 tag sequence datasets.

Functional enrichment analysis of the MCC identified
variation in KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes) Pathway enrichment by sequencing technique (see
Supplementary Figure S6a online) but did not reveal signifi-
cant differences in Shannon Diversity (see Supplementary
Figure S6b). Notably, several metabolic pathways, including
“metabolism of cofactors and vitamins” and “carbohydrate
metabolism,” were more abundant, and “energy metabolism”
and “biosynthesis of other secondary metabolites” were less
abundant in the WMS dataset than in metagenomes pre-
dicted from16S tag sequence data. Functional profiles of
each skin swab generated from the WMS dataset also differed
compositionally from their matched V1eV3 and V4 pre-
dicted metagenomes. We focused on the 102 pathways
identified across all datasets, in at least four samples, and at
>0.5% abundance. We grouped these pathways into 28
higher-level KEGG categories, 21 of which were shared in all
datasets and significantly differentially enriched between
either of the 16S and the WMS datasets (FDR corrected
paired Wilcoxon test, P < 0.05; Figure 4a). The KEGG
category “xenobiotics biodegradation and metabolism” was
enriched in both 16S-predicted functional profiles
(Figure 4b), with the greatest differences observed in pathway
ko00930 (“Caprolactam degradation”). Conversely, the
“translation” category was more prominent in the WMS
dataset, with significant differences in ribosomal (ko03008,
ko03010) and tRNA (ko00970) pathways (Figure 4b). Several
KEGG categories also differed between V1eV3 and V4
sequencing techniques, including “glycan biosynthesis and
metabolism,” which is significantly different between the V4
and WMS datasets, but not the V1eV3 and WMS datasets
(Figure 4b). Despite these observed differences, Spearman
correlations revealed strong trends between the mean relative
abundances of higher-level KEGG pathways in the predicted
functional profiles compared to the WMS dataset across all
body sites sampled (see Supplementary Figure S7 online).

Diversity trends are dependent on methodology

We estimated and compared taxonomic alpha diversity of skin
bacterial communities using the Shannon diversity index,
which takes into account both the total number of species in
the community (richness) and the evenness of the species
present. All three sequencing approaches identified seba-
ceous sites as the least diverse and significantly less diverse
than intermittently moist sites (P < 0.05 Kruskal-Wallis and
multiple comparison post hoc test; Figure 5a). Whereas
V1eV3 and WMS sequencing identified significant diversity
trends between moist and sebaceous sites, V4 tag sequencing
did not. Alternatively, V4 found intermittently moist sites to be
significantly more diverse thanmoist sites, a trend that was not
confirmed by the other methods.

Cutaneous functional diversity, calculated based on pre-
dicted gene functions, has previously been shown to vary by
biogeography (Oh et al., 2014). However, we identified
conflicting trends in the skin microbiome based on the
microenvironment of the site sampled. Both V4 and V1eV3
tags identified significant differences dependent on micro-
environment that were not found in the WMS sequencing
dataset (P < 0.05 Kruskal-Wallis and multiple comparison
post hoc test; Figure 5b).

We also compared beta diversity, or bacterial community
structure, as recapitulated by V1eV3 and V4 tag sequencing.
We applied Procrustes analysis to Bray-Curtis dissimilarity
matrices in order to determine whether the use of different
16S rRNA sequence tags would derive similar beta diversity
conclusions. Although significant, Procrustes analysis
showed very weak congruence between the datasets (m12

squared ¼ 0.6338, P ¼ 0.0001; Figure 5c).

DISCUSSION
As microbiome sequencing surveys become increasingly
common, effective study design is crucial for the develop-
ment of meaningful datasets. We make the following rec-
ommendations for studying skin microbiota from swab
samples. (i) Regarding choosing a 16S rRNA gene amplicon,
the V1eV3 region provides more accurate assessments of
human skin microbiota compared to the V4 region. (ii) WMS
www.jidonline.org 951
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sequencing is superior for species-level taxonomic classifi-
cation, and previous reports have demonstrated the utility in
strain-level analysis and capturing nonprokaryotic elements
of the skin microbiome (Oh et al., 2014). However, V1eV3
tags provide reasonable proxies for taxonomic composition
and diversity at a much lower cost and effort. The goal of the
experiment should be carefully considered in addition to
available resources for generating and analyzing the resulting
datasets. (iii) Functional genetic predictions based on 16S
rRNA tags are remarkably similar to those provided by WMS
sequencing and in some cases may provide a reasonable
estimate of functional enrichment when the expertise and/or
resources are not available to perform WMS. However,
because of strain variability and widespread horizontal gene
transfer between bacteria, results of predictive analyses
should be interpreted with caution. Predictive analyses are
also limited in their ability to identify antibiotic resistance
Journal of Investigative Dermatology (2016), Volume 136
and virulence genes that may be of interest and could be
inferred from WMS sequencing.

Primers amplifying the V4 variable region, as used here,
were not able to recover Propionibacterium or reliably
speciate Staphylococcus. This is not unexpected because the
V4 hypervariable region is much shorter than the V1eV3 re-
gion and has a higher degree of sequence conservation
(Chakravorty et al., 2007). A separate study also remarked on
the absence of Propionibacterium in V4 libraries, suggesting
that a single nucleotide difference between the 27F forward
primer and annealing site in the P. acnes 16S rRNA gene may
impair detection (Nelson et al., 2014). Our findings under-
score the importance of thoroughly vetting primers for their
ability to capture microbiota of importance to the skin habitat.

A recent study noted that biogeography of the skin, as well
as individuality, shaped strain-level cutaneous diversity (Oh
et al., 2014). P. acnes was also found to be differentially
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Figure 5. Cutaneous taxonomic and
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sequencing method. Shannon
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associated with acne (Fitz-Gibbon et al., 2013). Speciation
and strain-level identification of microbiota may be impor-
tant if the ultimate goal is to identify a putative causal
microbe/microbiota for downstream studies to examine
mechanism. We noted that the V1eV3 region was able to
speciate the majority of Staphylococcus sequences based on
phylogenetic placement against a curated reference database
of Staphylococcus species. However,WMS sequencingwould
be a superior approach if one wished to identify overall strain-
level variability and/or did not have access to a reliable curated
reference database for the genus or species of choice.

Based on the striking differences in taxonomic composition
of the datasets, the strong correlations of KEGG pathway
abundance across sequencing methods is surprising but may
indicate shared functionality among different microorgan-
isms in cutaneous communities. A question that remains is
whether functional units provide additional insight and are
more effective at characterizing microbiome datasets than
the taxonomic units currently in use. Xu et al. (2014) found
that taxonomic profiles are better at classifying samples
into biologically meaningful categories. However, this may
change with technological advances, including improvement
in predictive tools and database annotations.

Although our study focused on the effect of primer selec-
tion and sequencing approach, there are many other factors
to consider when designing a skin microbiome survey. First,
the sample collection technique should be consistent
throughout the entire study. Here, we used a skin swab
method that is minimally invasive. Other studies have re-
ported the utility of deeper sampling of the skin layers
(Nakatsuji et al., 2013). The utility of these sampling methods
for WMS sequencing, however, probably is limited because
the amount of human DNA present in these samples would
greatly overwhelm the microbial DNA present.

Second, studies investigating low-biomass sites, such as
the skin, must also take sequencing depth into account and
www.jidonline.org 953
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use appropriate controls (Salter et al., 2014). Controls
accounting for reagent contamination are critical for inter-
preting results. We recommend eliminating potential con-
taminants whenever possible during sample preparation by
purchasing high-quality, ultrapure, DNA-free reagents, treat-
ing equipment and reagents with UV, and performing all
experiments in a hood.

Third, computational analysis and selection of variables,
such as OTU picking method and alpha diversity metric, can
greatly impact the interpretation of results. We used default
and commonly used variables, when possible, to make the
analysis widely applicable.

Finally, we did not obtain cultures in parallel to collecting
skin swabs for microbiome analysis to compare our results.
Although it would be a point of interest to compare cultures
to 16S tag sequencing for deciphering community composi-
tion, we expect that, as reported previously in several ex-
amples (Findley et al., 2013; Gardner et al., 2013), cultures
would greatly underestimate the diversity and composition of
the skin microbiota.

Overall, our comparison of three different DNA sequencing
methods indicates that 16S tag sequencing of the V1eV3 re-
gion is a reasonable, cost-effective approach to simply
profiling the composition of a skin microbial community or
identifying biomarkers associated with skin disease.

MATERIALS AND METHODS
Sample collection

The University of Pennsylvania Internal Review Board approved all

human subject recruitment and sample collection. Healthy adult

human volunteers residing in Philadelphia, Pennsylvania, and sur-

rounding areas were recruited to provide cutaneous swabs. Sample

collection was performed after written, informed consent was ob-

tained from the subjects. Exclusion criteria included self-reported

antibiotic treatment (oral or systemic) 6 months before enrollment,

observable dermatologic diseases, and significant comorbidities,

including HIV and other immunocompromised states. Subjects were

instructed to avoid hand sanitizers and antimicrobial soaps and

skincare products for 1 week before the sample collection appoint-

ment. Subjects were also instructed not to shower for 24 hours before

the sample collection appointment. Cutaneous swabs (Epicentre,

Madison, WI) were collected as described previously (Grice et al.,

2009) and stored in 300 ml of yeast cell lysis solution (from Epi-

centre MasterPure Yeast DNA Purification kit) ate20 �C immediately

after collection. Swabs were incubated for 1 hour at 37 �C with

shaking and 10,000 units of ReadyLyse Lysozyme solution (Epi-

centre). Samples were subjected to bead beating for 10 minutes at

maximum speed on a vortex mixer with 0.5-mm glass beads (MoBio,

Carlsbad, CA), followed by a 30-minute incubation at 65 �C with

shaking. As previously described (Gardner et al., 2013), protein

precipitation reagent (Epicentre) was added, and samples were spun

at maximum speed. The supernatant was removed, mixed with iso-

propanol, and applied to a column from the PureLink Genomic DNA

Mini Kit (Invitrogen, Carlsbad, CA). Instructions for the Invitrogen

PureLink kit were followed exactly, and DNAwas eluted in 50 ml of

elution buffer (Invitrogen). At each sampling event, swab control

samples that never came into contact with the skin were collected,

prepared, and sequenced exactly as the experimental samples. No

significant background contamination from either reagents and/or

collection procedures was recovered.
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16S rRNA sequencing, sequence processing, and analysis

Sequencing libraries were prepared using the Invitrogen Accuprime

for PCR, the AMPure kit (Beckman Coulter, Brea, CA) for PCR

product cleanup and normalization, and the Qiagen (Valencia, CA)

MinElute column for pooled PCR product purification. Sequencing

was performed at the Penn Next Generation Sequencing Core on the

Illumina MiSeq. The mock community control (MCC; obtained from

BEI Resources, NIAID, NIH, as part of the Human Microbiome

Project: Genomic DNA from Microbial Mock Community B [Even,

Low Concentration], version 5.1L, for 16S rRNA Gene Sequencing,

HM-782D) was sequenced in parallel with experimental samples.

Sequencing of the V4 region was performed using 150-bp paired-

end chemistry, and reads between 248 and 255 nucleotides long

were retained for analysis (99.58% of total sequences). Sequencing

of the V1eV3 region was performed using 300-bp paired-end

chemistry, and reads between 465 and 535 nucleotides long were

retained (96.74% of total sequences). Samples were processed in

QIIME 1.8.0 (Caporaso et al., 2010), and statistical analysis and

visualization was performed in the R statistical computing environ-

ment (R Core Team, 2015) as follows. Sequences were clustered into

OTUs with a 97% similarity threshold by reference-based Uclust

clustering (Edgar, 2010), using the Greengenes database 13_8

(DeSantis et al., 2006). Taxonomic classification was assigned using

the RDP classifier (Wang et al., 2007). Chimeric sequences were

identified using ChimeraSlayer (Haas et al., 2011) and removed

along with those identified as Unclassified or Cyanobacteria. OTUs

were removed if they only represented one sequence or were pre-

sent in only one sample. Samples were rarefied to an even depth of

2,500 sequences per sample, after which alpha and beta diversities

were calculated. In addition to the OTU-based methods, the MCC

datasets were blasted against a custom database (blastn, max_tar-

get_seqs 1, e<10e10; alignment length >300 for V1eV3 and >150

for V4 samples) to calculate community composition. Sequences

classified as Staphylococcus at the genus level were analyzed using

the pplacer algorithm with “—keep-at-most 100 emax-pitches 100”

(Matsen et al., 2010) and a curated phylogenetic reference package

(Conlan et al., 2012). Taxonomic classifications were generated us-

ing the guppy program, and species-level classifications with a

maximum likelihood >0.75 were retained. “Closed-reference” OTU

picking against the Greengenes database, with OTUs assigned at

97% identity, was used to generate biom-formatted OTU tables for

functional prediction with PICRUSt (Langille et al., 2013) that were

subsequently annotated with HUMAnN (HMP unified metabolic

analysis network) version 0.99 (Abubucker et al., 2012). Kruskal-

Wallis and multiple comparison post hoc tests were calculated in

R with the pgirmess package (Giraudoux, 2015). Procrustes analysis

was performed in R using beta diversity Bray-Curtis dissimilarity

matrices generated in QIIME and the metaMDS and protest functions

in the vegan package (Oksanen et al., 2015).

Whole metagenome sequencing and analysis

Libraries were prepared using the NexteraXT (Illumina, San Diego,

CA) library preparation kit according to the manufacturer’s in-

structions, except that PCR cycles were increased to 15. Addition-

ally, instead of using the manufacturer’s NexteraXT bead-based

normalization protocol, we manually normalized and pooled based

on DNA concentration and average fragment lengths. Sequencing

was performed at the Penn Next Generation Sequencing Core on the

Illumina MiSeq and/or HiSeq2500 rapid chemistry to obtain 150-bp

paired-end reads.
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Sequence data were obtained in fastq format. Adapters were

removed using cutadapt (version 1.4.1) with an error rate of 0.1 and

overlap of 10. Low-quality sequences (quality score <33) were

removed using the standalone FASTX toolkit (version 0.0.14) with

default parameters. Sequences mapping to the human genome were

removed from the quality-trimmed dataset using the standalone

DeconSeq toolkit (version 0.4.3) with default parameters and the

human reference GRCh37 (Schmieder and Edwards, 2011). Because

a 1% spike-in of PhiX Control was added to the sequencing runs

for quality control purposes, any sequences mapping to the

PhiX174 genome (NCBI Accession: NC_001422) were also removed

using DeconSeq. Sequences <80 nucleotides long were removed

from the quality trimmed, DeconSeq filtered fastq files, and one of

the paired reads (SE1) was input into MetaPhlAn version 1.7.7

(Segata et al., 2012, 2013) for taxonomic classification. One of

the paired ends (SE1) from the MCC sample was blasted against

a custom database of genomes from the 20 expected bacterial

species (blastn, max_target_seqs 1, e<10e10; alignment length >50)

to calculate community composition. Alpha diversity was calculated

in vegan (Oksanen et al., 2015) using the biom table generated

from MetaPhlAn output. For functional annotation and comparison,

one set of the paired-end reads (SE1) for each sample was sub-

sampled to 200,000 sequences, queried against a reduced

KEGG reference database version 56 (blastx; max_target_seqs 1,

e < 10-10), and input into HUMAnN version 0.99 (Abubucker

et al., 2012).
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